Abstract

Near-ground geophysical soil sensors provide valuable information for precision agriculture applications. Indeed, their readings can be used as proxy for many soil parameters. On-the-go soil sensor surveys are, typically, carried out intensively (e.g., every 2m) over many parallel transects. Two types of soil sensors measurements are considered in this paper: apparent electrical conductivity (4 fields in California, USA) and reflectance (1 field in Italy). Two types of spatial interpolations are carried out, universal kriging (model-based) and inverse distance weighting (deterministic). Interpolation quality assessment is usually carried out using leave-one-out (loo) resampling. We show that loo resampling on transect sampling datasets returns overly-optimistic, low interpolation errors, because the left-out data point has values very close to that of its neighbors in the training dataset. This bias in the map quality assessment can be reduced by removing the closest neighbors of the validation observation from the training dataset, in a (spatial) h-block (SHB) fashion. The results indicate that, for soil sensor data acquired along parallel transects: (i) the SHB resampling is a useful tool to test the performance of interpolation techniques and (ii) the optimal (i.e., rendering the same errors of un-sampled locations between transects) SHB threshold distance (h.dist) for neighbor-exclusion is proportional to the semi-variogram range and partial sill. This procedure provides research scientists with an improved means of understanding the error of soil maps made by interpolating soil sensor measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.