Abstract
Soil organic carbon pool is an important component of terrestrial carbon pool. Soil organic carbon pool and its dynamic change have important influence on carbon cycle in terrestrial ecosystem. Soil organic carbon density (SOCD) is an important parameter of soil carbon storage, and it is also an important index to evaluate farmland soil quality. Accurate prediction of regional organic carbon density spatial distribution is of great significance to the development of precision agriculture. A total of 242 farmland soil samples collected from the Jianghan Plain were used to explore the effects of land use types on the spatial distribution of SOCD in plain areas. Moreover, in the presence of spatial heterogeneity and spatial outliers of SOCD, three Kriging approaches combining land use types were used for the spatial prediction of SOCD. They were dummy variable regression Kriging (DV_RK), mean centering ordinary Kriging (MC_OK1) and median centering ordinary Kriging (MC_OK2). Results showed that the difference of land use types between paddy field and irrigable land was one of the reasons for the spatial heterogeneity of SOCD in the study area, resulting in spatial non-stationary characteristics of SOCD and lowering the performance of OK. DV_RK, MC_OK1 and MC_OK2, however, eliminating the impacts of SOCD spatialheterogeneity caused by land use types while modeling, enhancing the model stability. Therefore, the prediction accuracy of these three models was higher than that of ordinary Kriging (OK). Moreover, MC_OK2 outperformed the others in terms of model reliability, prediction accuracy and the ability to explain the total variance of SOCD. In summary, as an easily accessed auxiliary variable, land use type could effectively decrease the effects of spatial heterogeneity and spatial outliers on SOCD spatial interpolation model, improving the prediction performance and reducing the model uncertainty. SOCD map with higher quality could also be achieved to help reveal the spatial characteristics of SOCD for guiding the agricultural production.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Ying yong sheng tai xue bao = The journal of applied ecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.