Abstract

We investigate the interplay between the two components of the four-wave mixing (FWM) beams in a ladder-type three-level atomic system. The interplay, including the shift and splitting of the two FWM beams and their intensity modulation, depends on the frequency detuning and the angles as well as the powers of the pump fields. The x-directional splitting due to the cross-phase modulation and y-directional splitting because of electromagnetically induced gratings of FWM beams are investigated. Both the theoretical and experimental results exhibit that the spatial separation and the number of the FWM signals can be well controlled by additional dressing laser beams. Such studies not only can be very useful in better understanding the formation of spatial solitons but also have potential applications in signal processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.