Abstract

The crosslink density distribution in gels known as the spatial gel inhomogeneity has been investigated in poly(acrylic acid) (PAAc) gels with the static light scattering measurements. PAAc gels were prepared at a fixed chemical crosslink density but at various initial monomer concentrations. The gels were characterized by swelling and elasticity tests as well as by light scattering measurements. PAAc gels exhibit a maximum degree of spatial inhomogeneity at a critical monomer concentration ( ν 2 , cr 0 ) . ν 2 , cr 0 shifts toward higher concentrations as the gel swells beyond its dilution degree after preparation. Depending on the polymer concentration in gels, swelling reduces or enhances the extent of the spatial inhomogeneities. It was shown that the apparent degree of the spatial gel inhomogeneity is determined by the combination of three effects, namely the effects of the effective crosslink density, charge density and segment density. The relative magnitudes of these effects vary depending on the polymer concentration and lead to the appearance of a maximum degree of spatial inhomogeneity at a critical concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call