Abstract

We examined spatial aspects of harvesting impacts on aspen regeneration at 25 sites in northern Minnesota. These sites had been clearcut or partially harvested 4–11 years ago. At each site, residual overstory, which was composed of trees other than aspen, soil disturbance, and tree regeneration were determined along transects leading away from skid trails into the neighboring stand. We characterized spatial extent of soil disturbance as soil strength using an Eijkelkamp soil cone penetrometer. Soil disturbance dropped off very quickly at the edge of skid trails, suggesting that the impact of harvesting traffic on areas adjacent to skid trails is minor. On skid trails, disturbance levels were higher on sites harvested in summer than on sites harvested in winter. Even after adjustment for differences in soil disturbance, stands harvested in winter had higher regeneration densities and greater aspen height growth than stands harvested in summer, suggesting that aspen regeneration was more sensitive to a given level of soil disturbance on summer-harvested sites versus on winter-harvested sites. Soil disturbance and residual overstory interactively reduced aspen regeneration densities and height growth, indicating that avoidance of soil disturbance is even more critical in partially harvested stands. Predictions based in the spatial patterns of impact found in this study indicated that harvesting conditions may have a great impact in future productivity of a site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call