Abstract

The spatially varying intensity in a standing wave resonator leads to spatial hole burning in the gain medium of a laser. The spatial hole burning changes the gain of different longitudinal modes and can thus determine the optical spectrum of the laser. We simulate this longitudinal mode competition in standing wave resonators of thin-disk lasers. The resulting optical spectra of the laser are compared to measured optical spectra. We examine two types of resonators: I-resonators and V-resonators with different angles of incidence. In V-resonators, the non-normal incidence of the laser beam on the disk lifts the degeneracy of the polarization. Experiments show that the slight gain advantage for the $$p$$ -polarization does not lead to polarized emission. For both types of resonators, the measured spectra are in good agreement with the simulated ones. The simulations allow to study the influence of spectral intra-cavity losses on the optical spectrum of a thin-disk laser.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.