Abstract

AbstractSeismic surveys along subduction zones have identified anomalously high ratio of P‐ to S‐wave velocity (VP/VS) in the subducting oceanic crust that are possibly due to the presence of pore water. Such interpretations postulate that the pore structure is homogeneous at the scale of the seismic wavelength. Here we present the first statistical evidence of a heterogeneous pore structure in oceanic crust at scales larger than laboratory samples. The spatial correlation of measured bulk density profiles of the crustal section of the Samail ophiolite suggests that the pore structure is heterogeneous at scales smaller than ∼1 m. Wave‐induced fluid flow cannot follow the loading during the seismic wave propagation at this estimated heterogeneity, which implies that fluid‐filled microscopic pores and cracks have a limited impact on the observed high VP/VS anomalies in the subducting oceanic crust. Large‐scale cracks may therefore play an important role in shaping these anomalies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call