Abstract

A white-tailed deer (Odocoileus virginianus) population in northeastern Minnesota and a mule deer (O. hemionus) population in the Bridger Mountains Montana, have previously been shown to be spatially subdivided into contiguous subpopulations. We assessed the degree of genetic differentiation among subpopulations and tested the hypothesis that differentiation will be greater for mitochondrial DNA (mtDNA) than for nuclear-encoded allozymes. Differentiation of the white-tailed deer subpopulations was significant for two allozyme loci but not for mtDNA, and the overall degree of differentiation was low. Gene flow, recent founding of the subpopulations, and polygamous breeding structure may all have contributed to this pattern. Greater differentiation was evident among disjunct populations than between the contiguous subpopulations of white-tailed deer. The contiguous mule deer subpopulations were significantly differentiated for mtDNA and one allozyme locus. Differentiation was greater for mtDNA than for allozymes. These results are consistent with demographic data that indicate mule deer males disperse more than do females. Disjunct mule deer populations may be similar or dramatically different in mtDNA haplotype frequencies that do not necessarily vary with geographic distance. Current and historical gene flow and breeding structure will influence population genetic patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.