Abstract
BackgroundThe microbiota presents a compartmentalized distribution across different gut segments. Hence, the exogenous microbiota from a particular gut segment might only invade its homologous gut location during microbiota transplantation. Feces as the excreted residue contain most of the large-intestinal microbes but lack small-intestinal microbes. We speculated that whole-intestinal microbiota transplantation (WIMT), comprising jejunal, ileal, cecal, and colonic microbiota, would be more effective for reshaping the entire intestinal microbiota than conventional fecal microbiota transplantation fecal microbiota transplantation (FMT).ResultsWe modeled the compartmentalized colonization of the gut microbiota via transplanting the microbiota from jejunum, ileum, cecum, and colon, respectively, into the germ-free mice. Transplanting jejunal or ileal microbiota induced more exogenous microbes’ colonization in the small intestine (SI) of germ-free mice rather than the large intestine (LI), primarily containing Proteobacteria, Lactobacillaceae, and Cyanobacteria. Conversely, more saccharolytic anaerobes from exogenous cecal or colonic microbiota, such as Bacteroidetes, Prevotellaceae, Lachnospiraceae, and Ruminococcaceae, established in the LI of germ-free mice that received corresponding intestinal segmented microbiota transplantation. Consistent compartmentalized colonization patterns of microbial functions in the intestine of germ-free mice were also observed. Genes related to nucleotide metabolism, genetic information processing, and replication and repair were primarily enriched in small-intestinal communities, whereas genes associated with the metabolism of essential nutrients such as carbohydrates, amino acids, cofactors, and vitamins were mainly enriched in large-intestinal communities of germ-free mice. Subsequently, we compared the difference in reshaping the community structure of germ-free mice between FMT and WIMT. FMT mainly transferred LI-derived microorganisms and gene functions into the recipient intestine with sparse SI-derived microbes successfully transplanted. However, WIMT introduced more SI-derived microbes and associated microbial functions to the recipient intestine than FMT. Besides, WIMT also improved intestinal morphological development as well as reduced systematic inflammation responses of recipients compared with FMT.ConclusionsSegmented exogenous microbiota transplantation proved the spatial heterogeneity of bacterial colonization along the gastrointestinal tract, i.e., the microbiota from one specific location selectively colonizes its homologous gut region. Given the lack of exogenous small-intestinal microbes during FMT, WIMT may be a promising alternative for conventional FMT to reconstitute the microbiota across the entire intestinal tract.9qcU7emAWoJPzXSA1_M17CVideo
Highlights
The mammalian gastrointestinal tract (GI-tract) harbors a highly complex and diverse microbial consortium that maintains a mutualistic relationship with the host, contributing to host development and health including the prevention of gut microbial dysbiosis [1]
Genes related to nucleotide metabolism, genetic information processing, and replication and repair were primarily enriched in small-intestinal communities, whereas genes associated with the metabolism of essential nutrients such as carbohydrates, amino acids, cofactors, and vitamins were mainly enriched in large-intestinal communities of germ-free mice
Spatial heterogeneity for exogenous bacterial colonization across different gut segments A total of 4,896,764 high-quality reads were generated with an average of 16,655 reads in each sample and were assigned into 2729 bacterial features based on 100% sequence similarity
Summary
The mammalian gastrointestinal tract (GI-tract) harbors a highly complex and diverse microbial consortium that maintains a mutualistic relationship with the host, contributing to host development and health including the prevention of gut microbial dysbiosis [1]. Fecal microbiota transplantation (FMT) refers to the transfer of the fecal microbiota from a healthy donor into the gut of a diseased recipient, which restores the composition and functionality of the intestinal microbial community [6] and resists the colonization of pathogens [7]. The mammalian intestine is composed of a number of distinct microhabitats such as jejunum, ileum, cecum, and colon that selectively harbor characteristic microbes along the longitudinal axis of the intestinal lumens [16]. The small-intestinal microbiota is mainly responsible for simple carbohydrates and amino acid metabolism, while the large-intestinal community is more favorable for the fermentation of complex polysaccharides [17,18,19]. We speculated that whole-intestinal microbiota transplantation (WIMT), comprising jejunal, ileal, cecal, and colonic microbiota, would be more effective for reshaping the entire intestinal microbiota than conventional fecal microbiota transplantation fecal microbiota transplantation (FMT).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.