Abstract

In order to scientifically evaluate the characteristics and impact outcomes of transportation carbon emissions, this paper uses the panel statistics of 286 cities to measure transportation carbon emissions and analyze their spatial correlation characteristics. Afterwards, primarily based on the current research, a system of indicators for the impact factors of transportation carbon emissions was established. After that, ordinary least squares regression, geographically weighted regression, and multiscale geographically weighted regression models were used to evaluate and analyze the data, and the outcomes of the multiscale geographically weighted regression model were selected to analyze the spatial heterogeneity of the elements influencing transportation carbon emissions. The effects exhibit that: (1) The spatial characteristics of China's transportation carbon emissions demonstrate that emissions are high in the east, low in the west, high in the north, and low in the south, with high-value areas concentrated in the central cities of Beijing-Tianjin-Hebei, the Yangtze River Delta, the Guangdong-Hong Kong-Macao region, and the Chengdu-Chongqing regions, and the low values concentrated in the Western Sichuan region, Yunnan, Guizhou, Qinghai, and Gansu. (2) The spatial heterogeneity of transportation carbon emissions is on the rise, but the patten of local agglomeration is obvious, showing a clear high-high clustering, and the spatial distribution of high-high agglomeration and low-low agglomeration is positively correlated, with high-high agglomeration concentrated in the eastern region and low-low agglomeration concentrated in the western region. (3) The effects of three variables-namely, GDP per capita, vehicle ownership, and road mileage-have a predominantly positive effect on transportation carbon emissions within the study area, while another three variables-namely, constant term, population density, and number of people employed in transportation industry-have different mechanisms of influence in different regions. Constant term, vehicle ownership, and road mileage have greater impacts on transportation carbon emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.