Abstract

Space equipment experiences high thermal and mechanical loads that cause deformation of its structures, as well as elements of optical systems and radiation receivers, which can lead to changes in the mutual position of the optoelectronic device elements, disturbing its alignment, degrading image quality and increasing pointing errors. This paper presents a method of spatial geometric calibration that does not require additional equipment and investigates the dependence of the identification results on the viewing angle. The proposed methodology of optoelectronic instrument calibration is intended to improve efficiency, reliability and survivability of automated spacecrafts during their operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call