Abstract

BackgroundWith advancing stages of degeneration, denaturation and degradation of proteoglycans in the nucleus pulposus (NP) lead to tissue dehydration and signal intensity loss on T2-weighted MR images. Pfirrmann grading is widely used for grading degeneration of intervertebral discs (IVDs). The criterion to differentiate IVDs of Pfirrmann Grade I from the other grades is NP homogeneity. Pfirrmann grading is qualitative and its assessment may be subjective. Therefore, assessment of quantitative objective measures correlating with early disc degeneration may complement the grading. This study aimed to evaluate the applicability of the distance between the center weighted by signal intensity (weighted center) and the geometric center as a parameter of NP homogeneity. Other phenomena related to advancing stages of degeneration were also investigated.MethodsMR images of 65 asymptomatic volunteers with a total of 288 lumbar IVDs with clearly identifiable nucleus pulposus boundary (Pfirrmann Grade I, II and III) were included in this study. A custom-written program was developed to determine the IVD longitudinal axis, define the NP boundary, and to locate the coordinates of geometric and weighted NP centers on the mid-sagittal image of each studied IVD. The distances between the weighted and geometric centers on the longitudinal axis and the perpendicular axis of each IVD were calculated.ResultsThe weighted center located posterior to the geometric center, which indicated the signal intensity was lower at the anterior portion of the NP, in 85.8% of studied IVDs. The distance between the weighted and geometric center on the longitudinal axis was significantly shorter in homogeneous (Pfirrmann Grade I) than in inhomogeneous (Grade II) IVDs. The distance on the perpendicular axis in Grade III IVDs was significantly larger than that in Grade I and Grade II IVDs.ConclusionThe relationship between the weighted and geometric centers can serve as an indicator for NP homogeneity. The distance between both centers through advancing stages of degeneration demonstrated decrease of signal intensity progressing along the longitudinal axis initially and then along the cranio-caudal direction at later stages. These findings could provide insights of initiation and subsequent progression of degenerative changes in IVDs.

Highlights

  • With advancing stages of degeneration, denaturation and degradation of proteoglycans in the nucleus pulposus (NP) lead to tissue dehydration and signal intensity loss on T2-weighted Magnetic resonance (MR) images

  • On the longitudinal axis, the weighted center located posterior to the geometric center in 85.8% of the nuclei whose boundary was clearly identifiable

  • The distance between the center weighted by signal intensity of T2-weighted MR images and the geometric center of the nucleus pulposus has been used to predict the progression of intervertebral disc degeneration [9]

Read more

Summary

Introduction

With advancing stages of degeneration, denaturation and degradation of proteoglycans in the nucleus pulposus (NP) lead to tissue dehydration and signal intensity loss on T2-weighted MR images. Pfirrmann grading is widely used for grading degeneration of intervertebral discs (IVDs). Assessment of quantitative objective measures correlating with early disc degeneration may complement the grading. During the early stage of intervertebral disc degeneration, loss of proteoglycans and type II collagen has been observed [3]. Magnetic resonance (MR) images can detect dehydration associated with proteoglycan denaturation and degradation as a loss of the signal intensity on T2-weighted MR images [4, 5]. Restoring proteoglycan content is the basis of novel biological strategies for prevention or repair of intervertebral disc degeneration [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call