Abstract

Abstmf-An acoustic interferogram of equal phase wavefronts is produced with the scanning laser acoustic microscope. The interferogram contains information about the ultrasonic velocity distribution of the specimen under investigation. Through appropriate signal processing, the information can be transformed into a one-dimensional velocity map. This has been done quite successfully in the spatial domain, where the specimen is relatively homogeneous. For heterogeneous specimens, the spatial domain technique often fails. A new technique has been developed to reduce the interferograms to a one-dimensional velocity map. This approach operates in the spatial frequency domain and appears to be more reliable for heterogeneous specimens than the spatial domain approach. The theory and implementation of the spatial frequency domain technique (SFDT) are reported, and the two techniques are compared with each other. SFDT utilizes a smaller pixel size than the spatial domain technique. In addition SFDT is faster and more noise tolerant. The extension of the SFDT to produce two-dimensional velocity distribution images is also reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.