Abstract

The optical spatial frequencies of tumor interstitial fluid (TIF) are investigated. As a concentrated colloidal suspension of interacting native nanoparticles, the TIF can develop internal ordering under shear stress that may hinder delivery of antitumor agents within tumors. A systematic method is presented to characterize the TIF nanometer-scale microstructure in a model suspension of superparamagnetic iron-oxide nanoparticles and reconstituted high-density lipoprotein by Fourier spatial frequency (FSF) analysis so as to differentiate between jammed and fluid structural features in static transmission electron microscope images. The FSF method addresses one obstacle faced in achieving quantitative dosimetry to neoplastic tissue, that of detecting these nanoscale barriers to transport, such as would occur in the extravascular space immediately surrounding target cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.