Abstract
The spatial statistics of scalp electroencephalogram (EEG) are usually presented as coherence in individual frequency bands. These coherences result both from correlations among neocortical sources and volume conduction through the tissues of the head. The scalp EEG is spatially low-pass filtered by the poorly conducting skull, introducing artificial correlation between the electrodes. A four concentric spheres (brain, CSF, skull, and scalp) model of the head and stochastic field theory are used here to derive an analytic estimate of the coherence at scalp electrodes due to volume conduction of uncorrelated source activity, predicting that electrodes within 10-12 cm can appear correlated. The surface Laplacian estimate of cortical surface potentials spatially bandpass filters the scalp potentials reducing this artificial coherence due to volume conduction. Examination of EEG data confirms that the coherence estimates from raw scalp potentials and Laplacians are sensitive to different spatial bandwidths and should be used in parallel in studies of neocortical dynamic function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.