Abstract

The ultra-low-frequency (ULF) geomagnetic pulsations observed at two nearly conjugate mid-latitude sites are examined to study their spatial structure and polarization, and learn about the role of ionospheric conductivity in forming their ground signatures. The data of 1999–2002 from Antarctica and New England ( L of 2.4) are compared with the numerical results obtained in a simple plane model of ULF wave propagation through the ionosphere and atmosphere. The multi-layered model environment includes an anisotropic and parametrically time-dependent ionosphere, a uniform magnetosphere and a conducting Earth, all placed in a tilted geomagnetic field. The measured diurnal and seasonal variations in the orientation angle of the polarization ellipse are interpreted as effects of hydromagnetic wave propagation through the ionosphere and conversion to an electromagnetic field below. Essentially, the phase, amplitude and polarization of ULF waves observed at the ground are controlled by the wave's spatial structure in the magnetosphere and ionospheric transverse conductivities. The differences shown by the characteristics of simultaneous pulsations in conjugate areas arise mainly from different local ionospheric conditions, while the source waves of the pulsations are common to both sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.