Abstract

Modern one-stage video instance segmentation networks suffer from two limitations. First, convolutional features are neither aligned with anchor boxes nor with ground-truth bounding boxes, reducing the mask sensitivity to spatial location. Second, a video is directly divided into individual frames for frame-level instance segmentation, ignoring the temporal correlation between adjacent frames. To address these issues, we propose a simple yet effective one-stage video instance segmentation framework by spatial calibration and temporal fusion, namely STMask. To ensure spatial feature calibration with ground-truth bounding boxes, we first predict regressed bounding boxes around ground-truth bounding boxes, and extract features from them for frame-level instance segmentation. To further explore temporal correlation among video frames, we aggregate a temporal fusion module to infer instance masks from each frame to its adjacent frames, which helps our frame-work to handle challenging videos such as motion blur, partial occlusion and unusual object-to-camera poses. Experiments on the YouTube-VIS valid set show that the proposed STMask with ResNet-50/-101 backbone obtains 33.5 % / 36.8 % mask AP, while achieving 28.6 / 23.4 FPS on video instance segmentation. The code is released online https://github.com/MinghanLi/STMask.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.