Abstract

In humans, short-latency crossed spinal inhibitory reflexes are elicited in the contralateral soleus (cSOL) muscle following stimulation of the ipsilateral posterior tibial nerve (iPTN). To date, the spinal interneurons mediating the cSOL inhibition are unknown. This study investigated whether the Ia inhibitory interneurons in the disynaptic reciprocal inhibition pathway mediate the short-latency cSOL inhibition. Following combined stimulation of the iPTN and the contralateral common peroneal nerve (cCPN), we quantified the spatial facilitation of the ongoing electromyography (EMG; Experiment 1) or the test H-reflex (Experiment 2) in the cSOL during walking. There was a significant increase in the cSOL inhibition when the two stimuli were elicited in combination compared to that expected from the algebraic sum of the two if elicited separately. It is therefore likely that the Ia inhibitory interneurons in the disynaptic reciprocal inhibitory pathway contribute to the short-latency cSOL inhibitory reflex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.