Abstract

The aim of this paper is to provide models for spatial extremes in the case of stationarity. The spatial dependence at extreme levels of a stationary process is modeled using an extension of the theory of max-stable processes of de Haan and Pickands [Probab. Theory Related Fields 72 (1986) 477–492]. We propose three one-dimensional and three two-dimensional models. These models depend on just one parameter or a few parameters that measure the strength of tail dependence as a function of the distance between locations. We also propose two estimators for this parameter and prove consistency under domain of attraction conditions and asymptotic normality under appropriate extra conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.