Abstract

Built-up areas are one of the most intuitive and important indicators used to assess urbanization, the spatial expansion of which is of great significance in depicting the evolution of urban spatial structures. Based on the harmonized Defense Meteorological Satellite Program (DMSP) nighttime light dataset, this paper extracts the spatial distribution of built-up areas and explores the spatial expansion patterns and spatiotemporal evolution regularity of the Beijing–Tianjin–Hebei urban agglomeration from 1992 to 2020. The results show that the spatial comparison method, comparing the extracted area with the government’s statistical area, can accurately determine the optimal threshold of nighttime light and extract urban built-up areas. According to the spatial comparison method, the built-up areas of the Beijing–Tianjin–Hebei urban agglomeration are expanding rapidly from 1992 to 2020, and both expansion speed and expansion intensity have experienced an inverted “U-shaped” growth process. As the core cities of the Beijing–Tianjin–Hebei urban agglomeration, Beijing and Tianjin have been in the later stage of spatial expansion with slower expansion speed but better quality. In contrast, prefecture-level cities and other node cities have rapid expansion speed. The urban space structure of the Beijing–Tianjin–Hebei urban agglomeration has changed from a “monocentric model” to a “polycentric model” to a “metropolitan model”. High-tech industry parks around node cities have become important strongholds of urban space development, leading cities to evolve from monocentric structures to polycentric structures of downtown and industrial parks. The radiation range of core cities expands and spreads to surrounding districts and counties, which inevitably lead to the formation of metropolitan areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call