Abstract

The spatial evolution of the electron energy distribution function (EEDF) in the axial direction of a capacitively coupled plasma with two parallel plate electrodes is investigated using an optical emission line-ratio method for Ar/Kr discharges. When the rf power is increased from 25 to 400 W at a pressure of 400 mTorr, we observe a transition from convex EEDFs to concave ones and a sharp increase in electron density, due to an α–γ mode transition, which is believed to be caused by the high-energy electrons originating in the high-voltage sheath. We also investigate the spatial evolution of the EEDF when the pressure is increased from 45 to 500 mTorr at a power of 100 W. The EEDF is uniform at pressures below 180 mTorr and becomes non-uniform at higher pressures, owing to the decrease in the energy relaxation length of the high-energy electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.