Abstract

The propagation of small perturbations in longitudinally inhomogeneous flows is investigated. The evolution of the perturbations is studied with reference to the radial flow of a viscous incompressible fluid between plane nonparallel walls, the simplest inhomogeneous flow. Using a generalized method of variation of constants, the corresponding boundary-value problem is reduced to an infinite-dimensional evolutionary system of ordinary differential equations for the complex amplitudes of the eigensolutions of a locally homogeneous problem. Physically, the method can be interpreted as a representation of the perturbation evolution process via two concomitant processes: the independent amplification (attenuation) of normal modes of the locally homogeneous problem and the rescattering of these modes into each other on local inhomogeneities of the base flow. The calculations show that reduced versions of the method are promising for describing the linear stage of laminar-turbulent transition in a boundary layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call