Abstract
This paper analyzes the relative distribution of annual saturation and contrast effects of discomfort glare in a deep open-plan office. A previous comparative study has shown that while hybrid glare metrics were found to predict glare well in most scenarios occurring in the investigated datasets, contrast-driven glare metrics predict discomfort glare better than saturation-driven metrics in daylit conditions when vertical illuminance is lower than 3000 lux; and saturation-driven glare metrics outperform the contrast-driven metrics when vertical illuminance is above 3000 lux. The focus of this paper is to determine the potential effects of contrast-driven and saturation-driven glare across the floor plan, simulating annual hourly vertical illuminance (Ev) and contrast (log_gc) were simulated in 8 view directions with a grid spacing of 0.75m, at a typical eye level of 1.2m, for daylight hours in the context of Geneva, Switzerland. To identify viewpoints where saturation and contrast effects of glare dominate, a synthetic and versatile spatial visualization approach was established. A new simulation method allowed us to calculate detailed annual saturation and contrast metrics in a reasonable timeframe. Results show that high contrast lighting conditions occur far more frequently than high saturation conditions except for a narrow area near the facade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.