Abstract

It is well known that attentional selection is sensitive to the regularities presented in the display. In the current study we employed the additional singleton paradigm and systematically manipulated the probability that the target would be presented in one particular location within the display (probabilities of 30%, 40%, 50%, 60%, 70%, 80%, and 90%). The results showed the higher the target probability, the larger the performance benefit for high- relative to low-probability locations both when a distractor was present and when it was absent. We also showed that when the difference between high- and low-probability conditions was relatively small (30%) participants were not able to learn the contingencies. The distractor presented at a high-probability target location caused more interference than when presented at a low-probability target location. Overall, the results suggest that attentional biases are optimized to the regularities presented in the display tracking the experienced probabilities of the locations that were most likely to contain a target. We argue that this effect is not strategic in nature nor the result of repetition priming. Instead, we assume that through statistical learning the weights within the spatial priority map are adjusted optimally, generating the efficient selection priorities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.