Abstract

The relative importance of the intrinsic and extrinsic factors determining the variety of geometric shapes exhibited by dendritic trees remains unclear. This question was addressed by developing a model of the growth of dendritic trees based on diffusion-limited aggregation process. The model reproduces diverse neuronal shapes (i.e., granule cells, Purkinje cells, the basal and apical dendrites of pyramidal cells, and the axonal trees of interneurons) by changing only the size of the growth area, the time span of pruning, and the spatial concentration of ‘neurotrophic particles’. Moreover, the presented model shows how competition between neurons can affect the shape of the dendritic trees. The model reveals that the creation of complex (but reproducible) dendrite-like trees does not require precise guidance or an intrinsic plan of the dendrite geometry. Instead, basic environmental factors and the simple rules of diffusive growth adequately account for the spatial embedding of different types of dendrites observed in the cortex. An example demonstrating the broad applicability of the algorithm to model diverse types of tree structures is also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call