Abstract

BackgroundRecurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) generally has a poor prognosis for patients with limited treatment options. While incorporating immune checkpoint inhibitors (ICIs) has now become the standard of care, the efficacy is variable, with only a subset of patients responding. The complexity of the tumor microenvironment (TME) and the role of tertiary lymphoid structures (TLS) have emerged as critical determinants for immunotherapeutic response.MethodsIn this study, we analyzed two independently collected R/M HNSCC patient tissue cohorts to better understand the role of TLS in response to ICIs. Utilizing a multi-omics approach, we first performed targeted proteomic profiling using the Nanostring GeoMx Digital Spatial Profiler to quantify immune-related protein expression with spatial resolution. This was further characterized by spatially resolved whole transcriptome profiling of TLSs and germinal centers (GCs). Deeper single-cell resolved proteomic profiling of the TLSs was performed using the Akoya Biosciences Phenocycler Fusion platform.ResultsOur proteomic analysis revealed the presence of T lymphocyte markers, including CD3, CD45, and CD8, expressing cells and upregulation of immune checkpoint marker PD-L1 within tumor compartments of patients responsive to ICIs, indicative of ‘hot tumor’ phenotypes. We also observed the presence of antigen-presenting cells marked by expression of CD40, CD68, CD11c, and CD163 with upregulation of antigen-presentation marker HLA-DR, in patients responding to ICIs. Transcriptome analysis of TLS and GCs uncovered a marked elevation in the expression of genes related to immune modulation, diverse immune cell recruitment, and a potent interferon response within the TLS structure. Notably, the distribution of TLS-tumor distance was found to be significantly different across response groups (H = 9.28, p = 0.026). The proximity of TLSs to tumor cells was found to be a critical indicator of ICI response, implying that patients with TLSs located further from tumor cells have worse outcomes.ConclusionThe study underscores the multifaceted role of TLSs in modulating the immunogenic landscape of the TME in R/M HNSCC, likely influencing the efficacy of ICIs. Spatially resolved multi-omics approaches offer valuable insights into potential biomarkers for ICI response and highlight the importance of profiling the TME complexity when developing therapeutic strategies and patient stratification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.