Abstract

The study of the spatial dynamics of steady one-dimensional H 2/O 2 flames is continued. Algorithms for generating low-dimensional manifolds for these systems are presented and used to find low-dimensional manifolds for the flames and the corresponding adiabatic, isobaric chemical-kinetic systems. It is demonstrated that these algorithms generate manifolds that are more accurate than the ILDM algorithm for two-dimensional manifolds of the flames. The manifolds are then employed to study the relationship between the manifolds of the flame and the manifolds of the chemical-kinetic system. It is shown that the one-dimensional manifolds of the flame match well with the composite manifolds of the chemical kinetics, but that for two-dimensional manifolds there are discrepancies between the flame manifolds and the chemical-kinetic manifolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.