Abstract

Nonlocal infection plays an important role in epidemic spread, which can reflect the real rules of infectious disease. To understand its mechanism on disease transmission, we construct an epidemic model with nonlocal delay and logistic growth. The Turing space for the emergence of stationary pattern is determined by series of inequations by mathematical analysis. Moreover, we use the multi-scale analysis to derive the amplitude equation, and obtain rich pattern structures by controlling the variation of the delay parameter. As the increase of delay parameter, the degree of pattern isolation increase as well as the density of the infected population decrease which prohibits the propagation of the disease in space. The results systematically reveal the impact of nonlocal delay on the spread of infectious diseases and provide some new theoretical supports for controlling the spread of infectious diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.