Abstract
Explicit spatial analysis of infectious disease processes recognizes that host-pathogen interactions occur in specific locations at specific times and that often the nature, direction, intensity and outcome of these interactions depend upon the particular location and identity of both host and pathogen. Spatial context and geographical landscape contribute to the probability of initial disease establishment, direction and velocity of disease spread, the genetic organization of resistance and susceptibility, and the design of appropriate control and management strategies. In this paper, we review the manner in which the physical organization of the landscape has been shown to influence the population dynamics and spatial genetic structure of host-pathogen interactions, and how we might incorporate landscape architecture into spatially explicit population models of the infectious disease process to increase our ability to predict patterns of disease occurrence and optimally design vaccination and control policies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.