Abstract

Forest above-ground biomass (AGB) is an excellent indicator for the health status and carbon sink potential of forest ecosystems, as well as the effectiveness of sustainable forest management practices. However, due to the strong heterogeneity of forest structures, acquiring high-accuracy and high-resolution AGB distributions over wide regions is often prohibitively expensive. To fill the resulting gap, this paper uses part of Lishui city, Zhejiang province as the study area, based on 168 forest sample observations, and proposes a novel integrated framework that combines a multi-scale geographically weighted regression (MGWR) with the co-kriging algorithm to refine the spatial downscaling of AGB. Specifically, optimal predictor variable sets identified by random forest importance ranking, multiple stepwise regression, and Pearson VIF methods were first assessed based on their total explanatory power (R square), followed by reconfirmation of the optimal predictor variable set based on the non-stationarity impact of each variable’s action scale (bandwidth) on the output pattern of AGB downscaling. The AGB downscaling statistical algorithms included MGWR, GWR, random forest (RF), and the ordinary least square (OLS), and their downscaling performances were quantitatively compared to determine the best downscaling method. Ultimately, the downscaled AGB pattern was produced using the best method, which was further refined by considering the spatial autocorrelation in AGB samples by implementing a co-kriging interpolation analysis of the predicted AGB downscaling residuals. The results indicated that the variable set selected by random forest importance ranking had the strongest explanatory power, with a validation R square of 0.58. This was further confirmed by the MGWR analysis which showed that the set of variables produced a more spatially smooth downscaled AGB pattern. Among the set of optimal variables, elevation and aspect affected AGB at local scales, representing a strong spatial heterogeneity. Some textural features and spectral features showed a smooth action scale relative to AGB, showing insignificant spatial scale processes. In the study area with complex terrain, using aspect as a covariant, the co-kriging (CK) model achieved a higher simulation accuracy for the MGWR-predicted AGB residuals than the ordinary kriging model. Overall, the proposed MGWR-CK model, with a final validation R square value of 0.62, effectively improved the spatial distribution characteristics and textural details of AGB mapping without the additional costs of procuring finer satellite images and GIS-based features. This will contribute to the accurate assessment of carbon sinks and carbon stock changes in subtropical forest ecosystems globally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.