Abstract

Cooking oil fume (COF) is associated with an increased risk of health effects. The particle number size distribution (PNSD) of COF presenting as lognormal structures is recognized as a key metric in determining its exposure toxicities, but the information of its spatial distributions and impacting factors are still lacking. This study conducted real-time monitoring COF PNSD during the cooking processes in a kitchen laboratory. Results showed that COF PNSD presented as a combination of two lognormal distributions. The peak diameters of PNSD inside the kitchen were: 385 nm (very close to the source), 126 nm (5 cm above the source), 85 nm (10 cm above the source) to 36 nm (breath point, 50 cm above the source), 33 nm (sucking surface of the ventilation hood), 31 nm (1 m horizontally to the source), and 29 nm (3.5 m horizontally to the source). The reasons of this observation was the sharp decrease of temperature from the pot to the indoor environment reduced the surface partial pressure of the COF particles and caused a large amount of semi-volatile organic carbons (SVOCs) with lower saturation ratios condensed on the COF surface. With the temperature difference became insignificant with the distance further to the source, the reduction of the supersaturation helped the gasification of these SVOCs. Dispersion led to a linearly horizontal decreases ((1.85 ± 0.10) × 106#/cm3/m) in particle numbers with further distances, making the peak particle number concentrations decrease from 3.5 × 105#/cm3 at the breath point to 1.1 × 105#/cm3 at the point 3.5 m to the source. Cooking dishes also presented as mode diameters of 22-32 nm at the breath point. The amount of edible oil used in different dishes is positively correlated with the peak concentration of COF. Only increasing the exhaust force of the range hood cannot significantly change the sucked COF particle numbers and sizes, owning to that COF particles are mainly small sizes. New technologies on cleaning small size particles and efficient supplemental air should be given more considerations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.