Abstract

Following the closure of perfluorooctanesulfonic acid (PFOS) production to comply with the Stockholm Convention regulations or restrictions, manufacturers have shifted to developing short-chain alternatives like perfluorobutane sulfonic acid (PFBS). However, limited research has been conducted to evaluate the impact of this transition on the surrounding environment. This study focused on the spatial distribution, source, and fate of 18 per- and polyfluoroalkyl substances (PFAS) in the surrounding environment of the closure and transformation of two PFAS manufacturing plants in Fujian, China. The total concentrations of PFAS in surface water, sediment, and fish were within the range of 48.9–72,400 ng/L, 0.930–57.6 ng/g dw, and 3.33–1245 ng/g dw, respectively. The predominant compounds were PFBS, PFOS, and perfluorooctanoic acid (PFOA) among the three matrices. Principal component analysis highlighted significant differences in PFAS profiles across different regions of the Futun River, suggesting diverse sources of PFAS. Source apportionment indicated that despite being closed or converted for almost three years, the two factories still significantly impacted the surrounding environment. The shutdown factory mainly released PFAS characterized by perfluoroalkyl sulfonic acids. In contrast, the PFAS were released from conversion plant with the fingerprint being PFBS and perfluoroalkyl carboxylic acids. The conversion of the factories has resulted in the coexistence of long-chain and short-chain PFAS, which has complicated the composition of PFAS in the environment. As sewage treatment plant could not effectively remove PFBS and perfluorobutanoic acid (PFBA) in wastewater, and due to their strong migration ability, these chemicals had a wider impact range, increasing the difficulty of environmental restoration and management. Risk assessment showed that PFAS downstream of the two factories posed high or moderate ecological risks. Specifically, PFBS, PFOS, and PFOA displayed the highest risk quotients and should be paid further attention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call