Abstract
Understanding the spatial variations in potential evapotranspiration (PET) and its influencing climatic variables is essential for sustainable agriculture and water resources management. However, little published research has investigated the alternation of PET due to climate change in the case of Iraq. The objective of the present study was to analyze the spatial trends in annual and seasonal PET in Iraq. Accordingly, the latest global ERA5-Land dataset of the European Centre for Medium-Range Weather Forecasts for 1981–2021 was employed. The PET was estimated using the FAO-Penman–Monteith method. The modified Mann–Kendall statistical test was applied to evaluate the significance of the trends in PET, which can separate unidirectional trends caused by climate change from the natural variability of climate. The attained results indicate that: (1) Over the past four decades, the annual and seasonal PET witnessed a significant increasing trend in almost all of Iraq, except for the alluvial plain in the eastern and southeastern parts. (2) The increasing trend in PET confirmed the patterns of the trend significance, with the highest increase of 0.28–0.65 mm/decade in southwest Iraq. (3) Summer had the highest upward trend of 0.35–0.65 mm/decade, followed by spring, autumn, and winter. (4) The air temperature was the predominant driving factor of rising PET, showing a positive correlation ranging from 0.77 to 0.88 and a contribution of 26 to 94%, mainly in the south, central, and northwest regions. The reverse contribution of wind speed and surface pressure to PET, particularly in the southeast and southwest, remains offset by the influence of air temperature and net solar radiation. Overall, the PET has risen drastically due to global climate change, indicating the potential for increased atmospheric water demand in the region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.