Abstract

AbstractIonospheric conductivity perpendicular to the magnetic field plays a crucial role in the electrical coupling between planetary magnetospheres and ionospheres. At Jupiter, it controls the flow of ionospheric current from above and the closure of the magnetosphere‐ionosphere circuit in the ionosphere. We use multispectral images collected with the Ultraviolet Spectral (UVS) imager on board Juno to estimate the two‐dimensional distribution of the electron energy flux and characteristic energy. These values are fed to an ionospheric model describing the generation and loss of different ion species, to calculate the auroral Pedersen conductivity. The vertical distributions of H3+, hydrocarbon ions, and electrons are calculated at steady state for each UVS pixel to characterize the spatial distribution of electrical conductance in the auroral region. We find that the main contribution to the Pedersen conductance stems from collisions of H3+and heavier ions with H2. However, hydrocarbon ions contribute as much as 50% to Σp when the auroral electrons penetrate below the homopause. The largest values are usually associated with the bright main emission, the Io auroral footprint and occasional bright emissions at high latitude. We present examples of maps for both hemispheres based on Juno‐UVS images, with Pedersen conductance ranging from less than 0.1 to a few mhos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call