Abstract

We report on the characteristics of the electronegative plasma in a large-scale hydrogen negative ion (H(-)) source. The measurement has been made with a time-resolved Langmuir probe installed in the beam extraction region. The H(-) density is monitored with a cavity ring-down system to identify the electrons in the negative charges. The electron-saturation current decreases rapidly after starting to seed Cs, and ion-ion plasma is observed in the extraction region. The H(-) density steps down during the beam extraction and the electron density jumps up correspondingly. The time integral of the decreasing H(-) charge density agrees well with the electron charge collected with the probe. The agreement of the charges is interpreted to indicate that the H(-) density decreasing at the beam extraction is compensated by the electrons diffusing from the driver region. In the plasmas with very low electron density, the pre-sheath of the extraction field penetrates deeply inside the plasmas. That is because the shielding length in those plasmas is longer than that in the usual electron-ion plasmas, and furthermore the electrons are suppressed to diffuse to the extraction region due to the strong magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.