Abstract
Intercropping and drip irrigation with plastic mulch are two agricultural practices used worldwide. Coupling of these two practices may further increase crop yields and land and water use efficiencies when an optimal spatial distribution of soil water contents (SWC), soil temperatures, and plant roots is achieved. However, this coupling causes the distribution of SWCs, soil temperatures, and plant roots to be more complex than when only one of these agricultural practices are used. The objective of this study thus was to investigate the effects of different irrigation treatments on spatial distributions of SWCs, soil temperatures, and root growth in a drip-irrigated intercropping field with plastic mulch. Three field experiments with different irrigation treatments (high T1, moderate T2, and low T3) were conducted to evaluate the spatial distribution of SWCs, soil temperatures, and plant roots with respect to dripper lines and plant locations. There were significant differences (p < 0.05) in SWCs in the 0–40 cm soil layer for different irrigation treatments and between different locations. The maximum SWC was measured under the plant/mulch for the T1 treatment, while the minimum SWC was measured under the bare soil surface for the T3 treatment. This was mainly due to the location of drippers and mulch. However, no differences in SWCs were measured in the 60 100 cm soil layer. Significant differences in soil temperatures were measured in the 0 5 cm soil layer between different irrigation treatments and different locations. The soil temperature in the subsoil (15 25 cm) under mulch was higher than under the bare surface. The overlaps of two plant root systems in an intercropping field gradually increased and then decreased during the growing season. The roots in the 0 30 cm soil layer accounted for about 60% 70% of all roots. Higher irrigation rates produced higher root length and weight densities in the 0 30 cm soil layer and lower densities in the 30 100 cm soil layers. Spatial distributions of SWCs, soil temperatures, and plant roots in the intercropping field under drip irrigation were significantly influenced by irrigation treatments and plastic mulch. Collected experimental data may contribute to designing an optimal irrigation program for a drip-irrigated intercropping field with plastic mulch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.