Abstract

ABSTRACTKnowledge of spatial variation of soil is important in site-specific farming and environmental modeling. Soil particles size and water distribution are most important soil physical properties that governing nearly all of the other attributes of soils. The objectives of this study were to determine the degree of spatial variability of sand, silt and clay contents, and water content at field capacity (FC), permanent wilting point (PWP), and available water content (AWC) of alluvial floodplain soils. Data were analyzed both statistically and geostatistically to describe the spatial distribution of soil physical properties. Soil physical properties showed large variability with greatest variation was observed in sand content (68%). Exponential and spherical models were fit well for the soil physical properties. The nugget/sill ratio indicates except clay all other soil physical properties were moderate spatially dependent (37–70%). Cross-validation of the kriged map shows that prediction of the soil physical properties using semivariogram parameters is better than assuming mean of observed value for any unsampled location. The spatial distribution of water retention properties closely followed the distribution pattern of sand and clay contents. These maps will help to planner to develop the variable rate of irrigation (VRI) for the study area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call