Abstract

Characterizing and assessing spatial distribution of soil phosphorus and herbage mass in relation to landscape properties, land use, or landscape positions is important for understanding how pasture sustainability can be managed and improved properly. Our reason for conducting this study was to determine the effects of different slope aspects and slope positions on spatial distribution of soil phosphorus and herbage mass in subtropical pastures. Soil and forage samples were collected from contiguous south-, north-, east-, and west-facing slopes across different landscape positions (top slope, middle slope, and bottom slope) in 100 ha of bahiagrass (Paspalum notatum)-based pastures from 2003 to 2006 in subtropical region of southeastern USA. Averaged across years, soils on the north-facing slope contained the greatest amount of soil phosphorus (12.4 ± 2.7 mg kg−1) when compared with other slope aspects. Slope aspect may be acting as an important topographic factor influencing local site microclimate mainly because it determines the amount of solar radiation received. The greatest herbage mass (averaged across year) of 2,967 ± 980 kg ha−1 and the highest phosphorus accumulation of 7.7 ± 3.0 kg ha−1 for bahiagrass were from the top slope position. There was a significant (P ≤ 0.05) decrease in the average herbage mass and phosphorus accumulation with decreasing slope (top to middle slope). Between the top slope and the bottom slope, herbage mass declined from 2,967 ± 980 to 1,805 ± 370 kg ha−1 while phosphorus accumulation was reduced by approximately 40% (7.7–4.6 kg ha−1). Results of our study may increase awareness on how the arrangement of food, water, and shelter and their interactions with topographic and landscape features can significantly influence the movement of animals and utilization of different pastures’ resources. While our study supports our hypothesis that slope aspect and slope position could be of relative importance in controlling spatial distribution of soil phosphorus and herbage mass, broad knowledge of cattle movement in pasture situations is as critical to understanding their impact on agro-ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call