Abstract

Bottom waters hypoxia spreads in many lakes worldwide causing severe consequences on whole lakes trophic network. Here, we aimed at understanding the origin of organic matter stored in the sediment compartment and the related diversity of sediment microbial communities in a lake with deoxygenated deep water layers. We used a geostatistical approach to map and compare both the variation of organic matter and microbial communities in sediment. Spatialisation of C/N ratio and δ13C signature of sediment organic matter suggested that Lake Remoray was characterized by an algal overproduction which could be related to an excess of nutrient due to the close lake-watershed connectivity. Three spatial patterns were observed for sediment microbial communities after the hypoxic event, each characterized by specific genetic structure, microbial diversity and composition. The relative abundance variation of dominant microbial groups across Lake Remoray such as Cyanobacteria, Gammaproteobacteria, Deltaproteobacteria and Chloroflexi provided us important information on the lake areas where hypoxia occurs. The presence of methanogenic species in the deeper part of the lake suggests important methane production during hypoxia period. Taken together, our results provide an extensive picture of microbial communities' distribution related to quantity and quality of organic matter in a seasonally hypoxic lake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.