Abstract

Coastal and estuarine systems play an important role in the global carbon cycle and often have complex carbonate chemistry dynamics due to a multitude of biogeochemical and physical drivers. Compared to classic estuaries, mechanisms driving the distribution of carbonate parameters in low-inflow estuaries are understudied. The spatial distribution of carbonate chemistry and hydrodynamic parameters were characterized in Morro Bay, a short and seasonally hypersaline estuary on the Central California Coast, during the dry, low-inflow season to better understand in situ modifications. Sampling transects were completed in the main channel in June, August, and September of 2018, bracketing both a high and low tide on each date. Temperature, salinity, total alkalinity, and dissolved inorganic carbon all increased from the mouth to the back of the estuary, with larger values observed during the low tide. pH values decreased towards the back of the bay, and had little variation between high and low tide for June and August transects. Flushing times (estimated using a salt-budget model approach) also increased toward the back of the bay which led to hypersaline conditions. Salinity alone only explained 20–33% of observed changes in total alkalinity and 13–22% of observed changes in dissolved inorganic carbon throughout the bay. The remaining changes in total alkalinity and dissolved inorganic carbon were likely driven by biogeochemical modifications enhanced by extended flushing times, particularly in the back bay. Prior to this project, Morro Bay experienced a recent, rapid collapse of eelgrass, the major biogenic habitat. In the last four years eelgrass in Morro Bay appears to be on a recovery trajectory; therefore, this study provides a baseline whereby future studies can evaluate carbonate chemistry changes associated with potential eelgrass recovery and expansion. This study highlights the unique hydrodynamic exchange in seasonally low-inflow estuaries and its potentially large role in influencing local carbonate chemistry and ocean acidification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.