Abstract

Microplastics (MPs) in freshwater environments have been recognized as one of the important sources of plastic contamination in marine ecosystems. Reducing the amount and spatial distribution of MPs reaching the sea through accumulation behind dams remains unclear. In this study we analyzed the spatial distribution of sediment and surface water MPs in the Aras Dam and from nineteen upstream and downstream locations of the Dam in the Aras River. The MPs abundance ranged from 32 to 528 items/kg dry weight (mean 217.8 ± 132.6) and 1 to 43 items/m3 (mean 12.8 ± 10.5) in the sediment and surface water stations, respectively. MPs abundance in surface waters collected within the Dam reservoir was significantly higher than those found either upstream or downstream (P < 0.05). For sediments, reservoir MPs concentration was generally higher than upstream and downstream, although their differences were not significant. High MPs concentration was observed in the vicinity of urban areas. Moreover, MPs abundance was positively correlated with total organic carbon (TOC) and clay content (P < 0.01). GAM analysis revealed that clay is the most important variable with lowest Akaike information criterion (AIC) and explained 61.3 % of deviance (R-sq.(adj) = 0.344) in MPs abundance. MP particles ranged from 0.1 to 5 mm in size and were dominated by fibers (53.5 %), black color (24 %) and PE polymer (36.6 %). Our results highlight the high MPs distribution in the Aras River and demonstrate that they accumulate in the surface waters behind the Dam. Consequently, the fate and effects of MPs in international rivers is one of the most politicized issues between countries with a common boundary and therefore needs joint management policies that help mitigate this insidious problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call