Abstract

The Cassini spacecraft made a gravity assist flyby of Jupiter in December 2000. The Imaging Science Subsystem (ISS) acquired images of the planet that covered the visual range with filters sensitive to the distribution of clouds and hazes, their altitudes and color. We use a selection of these images to build high-resolution cylindrical maps of the planet in 9 wavelengths. We explore the spatial distribution of the planet reflectivity examining the distribution of color and altitudes of hazes as well as their relation. A variety of analyses is presented: (a) Principal Component Analysis (PCA); (b) color-altitude indices; and (c) chromaticity diagrams (for a quantitative characterization of Jupiter “true” colors as they would be perceived by a human observer). PCA of the full dataset indicates that six components are required to explain the data. These components are likely related to the distribution of cloud opacity at the main cloud, the distribution of two types of hazes, two chromophores or coloring processes and the distribution of convective storms. While the distribution of a single chromophore can explain most of the color variations in the atmosphere, a second coloring agent is required to explain the brownish cyclones in the North Equatorial Belt (NEB). This second colorant could be caused by a different chromophore or by the same chromophore located in structures deeper in the atmosphere. Color indices separate different dynamical regions where cloud color and altitude are correlated from those where they are not. The Great Red Spot (GRS) appears as a well separated region in terms of its position in a global color-altitude scatter diagram and different families of vortices are examined, including the red cyclones which are located deeper in the atmosphere. Finally, a chromaticity diagram of Jupiter nearly true color images quantifies the color variations in Jupiter’s clouds from the perspective of a visual observer and helps to quantify how different are the observed shades of yellow and red. The color analysis also gives additional evidence in favor of a second distinct color in the red brown cyclones of the NEB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call