Abstract
Genetic variation among 596 individuals from 22 natural and 3 planted populations of Hagenia abyssinica (Rosaceae) sampled from the montane forests of Ethiopia was investigated at amplified fragment length polymorphism (AFLP) loci. We observed 106 unequivocally scorable AFLP markers out of which 91.5 percent were polymorphic. Populations harbored varying genetic diversities (He = 0.139-0.362), and showed low but significant genetic differentiation among them (FST = 0.077). Significant differentiation was observed even though previous paleoecological studies indicated that Hagenia abyssinica recolonized Ethiopia only after the Last Glacial Maximum, and our earlier analyses of maternally inherited chloroplast DNA revealed low mixing of recolonizing lineages through seeds and rare long distance seed dispersal. Genetic diversity did not decrease along recolonization routes, confirming effective gene flow, most likely through pollen, among populations. The observed variation at putatively neutral AFLPs does not reflect clinal variation patterns. As expected, population differentiation is lower at anonymous, mostly biparentally inherited, AFLPs than at maternally inherited chloroplast haplotypes. Despite presumably efficient seed and pollen dispersal of H. abyssinica by wind, a significant non-random fine-scale spatial genetic structure was observed up to 80 m in some populations. Due to significant pair-wise differentiation observed between populations, as many populations as possible should be considered for conservation, tree improvement and forestation programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.