Abstract

Spatial variability in the distribution of macroalgae and invertebrates was examined at a number of sites in the Strait of Magellan. Two main predictions of models of zonation were tested in this study: (1) consistency in patterns of vertical distribution among sites one to tens of kilometers apart, and (2) homogeneity between areas at the same level on the shore, tens to hundreds of meters apart. Two types of habitat were considered: continuous rocky shores and blocks of rock in gravel beaches. In the former habitat, percent cover estimates of sessile organisms (algae and mussels) were obtained from three replicated plots (0.5 × 0.5 m) sampled non-destructively in each of three random areas (stretches of shore about 20 m long) at each of three levels on the shore: high, middle and low intertidal zone. This procedure was repeated at six different sites along the Chilean coast of the Strait of Magellan. Blocks of rock were sampled at two sites about 1 km apart. Estimates of the abundance of sessile (barnacles and mussels) and mobile (limpets) organisms were obtained for six blocks at each of two levels on the shore (high and low intertidal zone) at each site. At each level on the shore, three blocks were sampled on the top and three on the vertical sides. A single plot was sampled on each block. This design allowed a test of the null hypothesis of no interactive effects between position on the blocks and level on the shore. Both the predictions were falsified: (1) there were large between-site differences in the vertical structure of assemblages and (2) variability between areas at the same level on the shore was large for some of the most common algae. In contrast, the null hypothesis of no interactive effects of position on the blocks and level on the shore was retained. The results of this study show that vertical position on the shore alone is not a good predictor of the structure of assemblages of benthic organisms in the rocky intertidal of the Strait of Magellan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.