Abstract

To investigate the environmental behavior of and carcinogenic risk posed by 16 priority-controlled polycyclic aromatic hydrocarbons (PAHs), soil samples and air samples from the coke oven top were collected in two prototype coking plants (named PF and JD). The PF soils contained more PAHs than the JD soils because the PF plant employed the side-charging technique and had a lower coke oven height. The soils from both plants contained enough PAHs to pose a carcinogenic risk, and this risk was higher in the PF plant. Data were collected on the source characteristic spectrum of stable carbon isotopic composition (δ13C) of PAHs emitted from the coke oven top (δ13C values of −36.02‰ to −32.05‰ for gaseous PAHs and −34.09‰ to −25.28‰ for particulate PAHs), and these data fill a research gap and may be referenced for isotopic-technology-based source apportionment. Diagnostic ratios and isotopic technology revealed that the coking plant soils were mainly influenced by the coking process, followed by vehicle exhaust; the soils near the boundary of each plant were slightly affected by C3 plant burning. For most PAHs [excluding fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene, and dibenzo(a,h)anthracene], the dominant migration process was the net volatilization of PAHs from soil to air. In the PF plant, 13C was depleted in gaseous PAHs during volatilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.