Abstract

Since the 1990s, a large area of sloping farmland in a purple soil hilly region of southwest China was converted into an orchard to prevent soil erosion, increase soil fertility, and elevate economic benefits for farmers. In order to explore the spatial distribution of soil carbon (C) and nitrogen (N) fractions on the slope of returning arable lands to citrus orchards in purple soil hilly areas, a soil sampling event was carried out in a citrus orchard at the Yanting Agro-ecological Experimental Station of Purple Soil, Chinese Academy of Sciences, to examine the differences in soil C and N fractions and their influencing factors. The results showed that the slope position had significant effects on the contents of soil total nitrogen (TN), nitrate nitrogen (NO3--N), and dissolved organic carbon (DOC) (P < 0.05), but the effects were not obvious regarding the total organic carbon (SOC) and ammonia nitrogen (NH4+-N) of the soil (P > 0.05). For topsoil (0-30 cm), the variation trend of soil NO3--N content along the slope was upper slope < middle slope < lower slope, whereas the TN and DOC contents along the slope exhibited the trend of upper slope > middle slope > lower slope. The contents of soil C and N in each slope position generally showed a downward trend with increasing soil depth (0-30 cm). The contents of soil TN, SOC, NO3--N, and DOC were significantly affected by soil depth (P < 0.05). The TN storage (0-30 cm) significantly decreased from the top to the bottom within the soil slope, with a value of 2.37, 1.89, and 1.62 t·hm-2 (reported as N) for the upper slope, middle slope, and lower slope, respectively. There was no significant difference in SOC reserves along the slope, with a range from 56.12 to 58.48 t·hm-2 (reported as C). Our results provide scientific basis for understanding the spatial distribution of soil nutrients of the restored farmland in purple soil hilly areas. Our research suggests that the spatial distribution of soil carbon and nitrogen storage should not be ignored when predicting the response of soil nutrients to land use change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.