Abstract

Identifying the driving factors and quantifying the sources of potentially toxic elements (PTEs) are essential for protecting the ecological environment of the Yellow River Delta. In this study, data from 201 surface soil samples and 16 environmental variables were collected, and the random forest (RF) and Shapley additive explanations (SHAP) methods were then combined to explore the key factors affecting soil PTEs. An innovative t-distributed random neighbor embedding-RF-SHAP model was then constructed, based on the absolute principal component score and multivariate linear regression model, to quantitatively determine PTE sources. Although average PTE concentrations did not exceed the risk control values, PTE distributions exhibited significant differences. It was found that sodium, soil organic matter, and phosphorus contents were the three most important factors affecting PTEs, and human activities and natural environmental factors both influence PTE contents by altering the soil properties. The proposed model successfully determined PTE sources in the soil, outperforming the original linear regression model with a significantly lower RMSE. Source analysis revealed that the parent material was the main contributor to soil PTEs, accounting for more than half of the total PTE content. Industrial and agricultural activities also contributed to an increase in soil PTEs, with average contributions of 19.91 % and 17.44 %, respectively. Unknown sources accounted for 10.83 % of the total PTE content. Thus, the proposed model provides innovative perspectives on source parsing. These findings provide valuable scientific insights for policymakers seeking to develop effective environmental protection measures and improve the quality of saline-alkali land in the Yellow River Delta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call