Abstract

Selenium (Se) is an essential micronutrient that is both hazardous and beneficial to living organisms. However, few studies have examined soil Se distribution and its driving mechanisms on a large basin scale. Thus, multivariate statistics, geostatistics, boosted regression trees, and structural equation models were used to investigate the spatial distribution, driving factors, and multivariate interactions of soil Se based on 1753 topsoil samples (0–20 cm) from the Taihu Lake Basin. The results indicated that the soil Se concentration ranged from 0.12 to 57.26 mg kg−1, with a mean value of 0.90 mg kg−1. Overall, the spatial pattern of soil Se gradually decreased from south to north with approximately 1.06% of the soil contaminated with Se. Moisture index (MI), soil moisture (SM), and ≥ 0 ℃ accumulative temperature (AAT0) were the main determinants of soil Se accumulation. Additionally, the substantial effect of SM∩AAT0 on soil Se concentrations demonstrated that climate-soil interactions largely governed the spatial pattern of soil Se. The Se-enriched and Se-contaminated soils occurred mainly in regions with high precipitation, MI, SM, AAT0, and soil organic matter. This study provides a theoretical basis and practical guidance for the remediation of soil Se contamination and the sustainable development of Se-enriched agriculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call