Abstract

We, using the Cluster data from 2001 to 2010, studied spatial distribution of the ion polytropic index in the magnetosheath, and the modulation of polytropic process by the low-frequency disturbances (4–18 mHz). The total of 30,3283 samples is divided into two sorts: quasi-perpendicular and quasi-parallel propagating ones. The median polytropic index increases with spreads narrowing from the bow shock to the magnetopause. The median polytropic indices are basically between isothermal and adiabatic in the inner magnetosheath, and between isothermal and isobaric in the outer magnetosheath. The spatial distributions of the correlation coefficient (CC) between the perturbed ion number density and the parallel magnetic field CC (δn, δB ∥) have a good correlation with those of polytropic index. The quasi-perpendicular disturbances are mostly mirror-like modes (D r ≪ 1) except for some slow-mode disturbances (D r ≥ 1) in the regions near the Sun–Earth line and the inner magnetosheath. The polytropic indices in the inner and middle magnetosheath modulated by mirror-like-mode disturbances are between 0.9 and 1.3. The quasi-parallel propagating low-frequency disturbances are predominantly slow modes in the inner and middle magnetosheath, and Alfvén modes in the outer magnetosheath. For the samples with quasi-parallel propagating disturbances, the polytropic processes are basically between isothermal and isobaric except near the magnetopause. The good correlation between the spatial distributions of polytropic index and low-frequency disturbances indicates that the distribution of the polytropic index in the magnetosheath is modulated by low-frequency disturbances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call