Abstract
BackgroundBiomphalaria straminea is an invasive vector in China, posing a significant threat to public health. Understanding the factors affecting the establishment of this snail is crucial to improve our ability to manage its dispersal and potential risk of schistosomiasis transmission. This study sought to determine the spatial distribution of B. straminea in mainland China and whether environmental factors were divergent between places with and without B. straminea.MethodsA malacological survey of B. straminea was conducted in Guangdong Province, China. Snails were identified using anatomical keys. Water and sediment samples were taken, and their physicochemical properties were analyzed using national standard methods. Landscape and climatic variables were also collected for each site. We compared the environmental characteristics between sites with and without B. straminea using Mann-Whitney U test. We further used generalized linear mixed models to account for seasonal effects.ResultsB. straminea was found at six sites, including one in Dongguan and five in Shenzhen. Probability map found a hot spot of B. straminea distribution at Shenzhen and Hong Kong. Sites occupied by B. straminea were characterized by higher median altitude, mean annual precipitation and moderate temperature. Water with snails had higher median concentrations of total nitrogen, nitrate and nitrites, ammoniacal nitrogen, calcium, zinc and manganese but lower dissolved oxygen and magnesium. Sediments with snails had higher median copper, zinc and manganese. B. straminea was associated with maximum temperature of the warmest month (pMCMC < 0.001) and sediment zinc (pMCMC < 0.001).ConclusionsB. straminea is distributed in Shenzhen and its surrounding areas in Guangdong, China. Sites with and without B. straminea differed in the maximum temperature of the warmest month and sediment zinc. Surveillance should be continued to monitor the dispersal of this snail in China.
Highlights
Biomphalaria straminea is an invasive vector in China, posing a significant threat to public health
Spatial distribution of B. straminea Biomphalaria straminea was found at 6 sites, including 1 in Dongguan and 5 in Shenzhen during 2016–2017 (Fig. 2a)
Results of univariate and multivariate generalized linear mixed model (GLMM) Univariate GLMM found that presence of B. straminea was associated with normalized difference vegetation index (NDVI), MaxTWM, water Dissolved oxygen (DO), water Mg and sediment Log10(Zn_s)
Summary
Biomphalaria straminea is an invasive vector in China, posing a significant threat to public health. Understanding the factors affecting the establishment of this snail is crucial to improve our ability to manage its dispersal and potential risk of schistosomiasis transmission. Schistosoma mansoni, whose intermediate hosts are freshwater snails of the genus Biomphalaria, is estimated to infect more than 80 million people in the tropical and subtropical areas of Africa, the Middle East, and South America [3]. The transmission of schistosomiasis is determined by the existence and geographic distribution of its host snails [5]. Biomphalaria straminea is an intermediate host of S. mansoni and is originated in southeastern South America [6]. In addition to the above peripheral range extensions, B. straminea is known for intercontinental dispersal to Hong Kong of China in 1974, possibly through tropical aquarium plants or fish trade with South America [7]. The snail has been found in different water habitats in Hong Kong and Shenzhen, Dongguan, and Huizhou of Guangdong Province, China [3, 8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.